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account. Thus, dilute sprays are prone to ambient Bow 
penetration, as expected. 

In conclusion, the criterion presented herein is a sufficient 
condition for ambient flow to go around a given spray 
configuration, rather than penetrating it. Numerical calcu- 
lations show that a spray will be more prone to ambient 
flow penetration for leaner mixtures, lower initial tempera- 
tures of gas phase and droplet, and more dilute spray 
configurations. 

Similar calculations to those presented above based now 
upon a dynamic, rather than a static, criterion would greatly 
contribute to physical accuracy when imbedded in more 
complicated spray-in-turbulent-flow models. This is because 
in turbulent flows, eddies contain pockets of droplets that tend 
to have their own identity much as the cloud in this model. In 
order to properly model the evaporation of these pockets of 
drops, it is first necessary to determine the conditions to which 
theyareexpoeed,inparticulariftheyareexposed toaflow past 
them. Themodel developed above shows that such an estimate 
can be easily accomplished. 
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A LONG-STANDING difficulty extensively discussed in the mass of the system), the transformation is 
literature pertains to the correctness of the transformation of 
temperature in special relativity [l, 23. With thesymbol T' for T’ = T’,/w (1) 
the rest frame temperature (rest with respect to the center of which is occasionally called the Einstein-Planck transforma- 

tion although the alternative formula, equation (2), was also 
used by Planck El]. Here v is the convection velocity of 
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temperature. They obtain 

T” = Tr(Jm)-i. (2) 

Landsberg [S] suggests an invariant transformation T = T’ 
arguing that the temperature has no meaning since it cannot be 
measured in the rest frame. An extensive discussion related to 
the above problem can be found in the papers by Schmid [6], 
Pathria [7], Balazs [S] and others. 

In considering the variational formulation of the heat 
conduction problems we have always used the proper frame 
temperature T = d&lap,” where pz and p,” are the proper 
densities of energy and entropy, respectively. Such a 
temperature was a basic notion for the next considerations. 
However the proper frame we had to assume was that of 
‘moving with the entropy’, this entropy being the quantity 
adjoint to the temperature T in the Gibbs equation. If the 
entropy flux is J, and the entropy density is ps then u, = J,/p, is 
the velocity associated with the entropy flow. It turns out that 
this velocity appears naturally in the formulae characterizing 
reversible and irreversible transfer ofenergy and entropy. For 
an equilibrium heat conductor at rest, u = 0 and of course o, 
= 0. If however an irreversible heat transfer occurs it results in 
an entropy flux different from zero even in a resting conductor. 
The corresponding velocity is u, = J,/p, appears then as a 
consequence of the temperature gradient and it may be called 
‘entropy drift velocity’. The quantity u, characterizes the 
entropy flow for both reversible and irreversible cases and it 
differs from zero for a resting nonequilibrium system which 
conducts the heat. The quantities J, and p, are well-defined 
components oftheentropy four-vector and their measurement 
determines the velocity u, = J,/p,. The thermal energy density 
pc in the frame moving with the velocity u, does not contain the 
flux contribution; it is therefore the rest internal energy pz. 
Therefore one has 

pyp= = p,“(p,“) = p,“(p,JiqP) (3) 

where c is the speed of light and pp is the entropy density in the 
laboratory frame in which the observed entropy flux is J, and 
the related velocity is u,. From equation (3) the three various 
definitions of temperature can be formally derived. The proper 
(thermostatic) temperature is of course 

y-x. 
ad 

(4) 

The partial derivative of the scalar p.” with respect to the 
density ps taken at the constant velocity u, is 

from equations (3) and (4). 
This quantity resembles the Einstein-Planck definition of 

temperature, equation (1). There is an essential difference, 
however, namely in equation (1) u is the velocity of convection 
whereas in equation (5) u, is the velocity of the frame moving 
with the transferred entropy, such that u, = J,/p,. 

It may be argued that the differentiation ofthe scalar pz with 
respect to the time component ps of the four-vector J: should 
be done keeping constant the remaining components of J: 
rather than the velocity u,. 

Hence one may define 

= T/J- (6) 

or in terms of u, 

TJ_ = T/J*. 

This corresponds to the Ott-Arzelies definition providing, 
however, that the velocity u, = J,/p, appears in T,. replacing 
the convection velocity o. The velocity u, can vary along 
the ‘entropy paths’, i.e. along the streamlines assigned to the 
J,(x) field in a concrete heat conduction process. The virtue of 

using temperatures T,, and T,, is that they do not contain 
the convection velocity explicitly. When a nonequilibrium 
conductor is in motion the observed flux J, and density ps differ 
from those measured for the resting conductor. They can be 
computed using well-known formulae for the transformation 
of the components of any four vector. Equations (4H7) are 
unchanged but in the general case involving convection, J, is 
the total entropy flux containing the convective contribution. 
The definition of Tin the frame ‘moving with the entropy’ is 
just as natural as that for the chemical potential 1( ofparticles in 
the frame whichmoves with them,e.g. forelectronsdriftingina 
resting nonequilibrium conductor, the natural definition of p 
is in the frame of vanishing current. This approach sorts out 
the kinetic energy of electron drift which is, in fact, the essential 
quantity influencing the form of the electron transport 
equation. The distinction between the two frames, the proper 
frameoftheconductorand theproperframeofthe transported 
particles, becomes more and more essential when the diffusion 
fluxes increase. When the transfer of entropy or heat is 
considered it appears that the choice of T’, T”, To., T,, is not a 
problem of definition but rather of the physical analysis. To 
reveal which expression should be favored let us consider the 
pure transfer of energy when the energy carriers are the mass- 
less particles. 

Consider the action based on the proper frame internal 
energy density p,” which is the usual Lagrangian density of a 
reversible process. For our problem of the irreversible transfer 
of energy the action should contain the additional 
multiplicative term containing the energy relaxation time r in 
the form exp(tr-i). Such terms appear naturally in the 
problems of irreversible diffusion of heat and mass [9-111. 
They are the scattering terms which describe interaction of a 
diffusive quantity with the conductor. Consequently we 
investigate the action : 

3=_ exp (t~-~)p~(p_/~) dV dt (8) 

extremized under the constraint of the entropy balance 
equation 

~+FJ,=a,(x,t). (9) 

Here (T~(x, t) is the entropy source, as an explicit function of 
coordinates and time. Applying the method of Lagrangian 
multipliers, we consider the variation of the augmented 
functional 

-p:(p,Jl -J:c-‘p;‘) 

11 exp(tr-‘)dVdt (10) 

where cp is a Lagrangian multiplier. The variation of 3 is 

The condition 153 = 0 leads to the equations 

To, 
c2J(l - vf/c’) - vq = O 

(12) 

(13) 

They are the stationarity conditions of 3with respect to J, and 
p,, respectively. At this point no conclusion can be made about 
the preference of the temperature (5) or (7). Although the 
temperature T,., rather than T,,, appears in equations (12) and 
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(13) this is only the formal consequence of the variables used 
(J,, p,), with respect to which the action 3 is varied. If the 
variables were (u,, p.) the temperature T,, would appear in the 
stationarity conditions. 

Consider, however, the equation of motion implied by the 
conditions (12) and (13). The multiplier cp is easily eliminated 
by differentiating equation (12) with respect to t and equation 
(13) with respect to x and then adding equations so obtained, 
to get 

+T-’ T% 
c*J(l_“f/c2) = O. (14) 

This result is independent of the variables with respect to 
which the action 3 was varied. It suggests that the 
temperatures TJS or T should be preferred, as they are the 
quantities in terms of which the equation of thermal motion 
(14) can be written in the simplest possible manner. Since v, 
= J,/p,, equation (14) can be transformed into the form 

a 
rpSdt(p-‘J,)+J, = -p,DVT,, = -&VT,, (15) 

where D = TC’ is the coefficient ofdiffusivity, 1, = p,D and J, is 
the energy flux defined (since there is no mass transfer) by 

J, = T,,J, = 
J(1 -::,cz, Js. 

Equation (15) describes the energy diffusion when the energy 
carrier is the massless relativistic particle. It has the structure of 
an extended Fourier-Fick law with the diffusivity D = z2 as 
the product of a single relaxation time and the square of the 
propagation velocity c. (This is in accordance with the usual 
definition of diffusivity for mass transfer which appears in 
Fick’s law.) The product p,D = 1, plays the role of the energy 
conductivity. 

Equation (15) is strongly nonlinear because the entropy 
density (and hence 1,) depends on the temperature 7: The 
presence ofan unsteady-state termin (15) indicates that energy 
flux exhibits inertia even if its carrier is a particle with zero rest 
mass, consistent with momentum transport by such particles. 
In fact (15) has the structure of Maxwell’s r121 generalization 
of the Fourier-Fick law of diffusion. 

The definition of energy flux (16) seems to be somewhat 
arbitrary up to this point. We will now show that the product 
T,,J, is the proper physical quantity since it is precisely the 
quantity which appears in the energy balance expression. 
Computing the time derivative of the energy density apz/& as 

ad _=- 
at 

one can eliminate ap,/at from the above equation using the 
balance equation (9). The result can be transformed into the 
form 

J(l -u,2/cZ) + dt c’J( 1 - vf/c’) 
(18) 

But the last term of this equation can be simplified by using the 
equation of motion (14). Finally we obtain (A, = p,D) 

~+div(V(IT~,c2))=-&(~(l~~~,c2)$J 
+ Tv(J(l _&)-‘~~~ (~(&))’ (19) 

where the last term on the RHS of equation (19) describes the 

negativecontribution to the energy balance due to dissipation. 
The nonrelativistic counterpart of (19) has the well-known 
form of the energy balance 

2 +div J, = To,-T-‘1;‘J~ (J, = TJ,). (20) 

The last terms in equations (19) and (20) describe irreversible 
energy dissipation. The correspondence of equation (19) with 
(20) is not only formal since, in the case of no mass transfer the 
LHS of (19) is precisely the four-divergence of the energy 
momentum tensor. Therefore the temperatures T,, and Tare 
the natural physical quantities and (16) describes the natural 
definition of the energy flux. The temperature T,, appeared 
naturally also in more complicated transfer models we have 
considered, involving energy transport by collision of the 
nonzero mass particles [13]. 

Although the temperature TJS appears commonly in the 
energy transport formulas and in the energy momentum 
tensor it is always expressed in terms of the most fundamental 
quantity, the rest temperature T measured in the frame of 
vanishingentropyflux.The temperature Tconstituted,infact, 
the starting quantity for all derivations given here. When a 
complex high-flux transport process occurs with various 
diffusing species present, it may be necessary to define a 
number of the quantities analogous to T Thev will be related 
to the partial dntropies of thespecies and ihe problem of 
multiple temperature relaxation will arise. 

In conclusion the definition of the relativistic transfor- 
mation of temperature can be linked with the pure energy 
transfer via the relativistic diffusion in a nonequilibrium 
system. The corresponding equation of diffusion has the form 
of Maxwell’s generalization of the Fourier-Fick law. In this 
work, only the case of massless energy carriers has been 
considered. The energy transfer equation having the extended 
structure of equation (15) can be derived also when the energy 
transport occurs via the diffusion ofparticles with nonzero rest 
mass, e.g. molecules of a perfect gas. This is, in fact, a classical 
problem of heat conduction in a gas discussed by Feynman et 
al. [14]. Therefore it should not be concluded that the 
relaxation structure of the energy transport equation or the 
inertial property of energy flux have relativistic origin. 
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INTRODUCTION 

MANY TRANSPORT processes occur in nature and in industrial 
applications in which the transfer of heat is governed by the 
process of natural convection. Natural convection arises in 
fluids when the temperature changes cause density variations 
leading to buoyancy forces. An excellent review of natural 
convection flows has been given by Ede [I]. Recently, 
Minkowycz and Sparrow [2, 31, Cebeci [4], and Aziz and 
Na [S] have studied the steady, laminar, incompressible, 
natural convection flow over a vertical cylinder using a local 
nonsimilarity method, a finite-difference scheme, and an 
improved perturbation method, respectively. However, they 
did not take into account the effect ofaxial heat conduction for 
small Prandtl number. It is known that the axial heat 
conductioneffect becomesimportant for low-Prandtl-number 
fluids such as a liquid metal. 

The aim of the present analysis is to study the effect of axial 
heat conduction on the steady, laminar, incompressible, 
natural convection flow over a vertical cylinder. The partial 
differential equations governing the flow have been solved 
numerically using an implicit finite-difference scheme in 
combination with the quasilinearization technique [6]. The 
results have been compared with the available results [2-51. 

GOVERNING EQUATIONS 

t To whom correspondence should be addressed. 

We consider a thin, vertical cylinder of radius rO which is 
situated in a quiescent environment having temperature T,. 
The surface of the cylinder is maintained at a uniform 
temperature T,. The axial and radial coordinates are taken to 
be x and r, with x measuring the distance along the centerline 
of the cylinder from its bottom end and r measuring normal to 
the axis of the cylinder. The gravitational force acts in the 
opposite direction to x. The fluid is assumed to have constant 

NOMENCLATURE 

F, F, dimensionless streamfunction and mass Greek symbols 
transfer parameter, respectively @, B thermal diffusivity of the fluid and 

F:, G:, skin friction and heat transfer parameters, volumetric coefficient of thermal expansion, 
respectively respectively 

9. G gravitational acceleration and 5, tl transformed coordinates 
dimensionless temperature, respectively 2, v, * axial heat conduction parameter, kinematic 

Gr, Gr, Grashof number and local Grashof number, viscosity, and dimensional streamfunction, 
respectively respectively. 

Nu, Pr Nusselt number and Prandtl number, 
respectively Superscript 

r, x radial and axial coordinates, respectively differentiation with respect to rf. 

r. radius of cylinder 
T temperature Subscripts 
n, r velocity components in x- and r-directions, x, r, 5 derivatives with respect to x, r and 5, 

respectively. respectively 
w, cc conditions at the wall and in the free 

stream, respectively. 


